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1. We will assume that the slit occupies the section ( - a ,  a) of the x axis. The mathematical problem is formulated 

as follows (we will denote the upper half-plane (y > 0) by R+ 2 and the lower half-plane (y < 0) by R_2): it is required to 

determine the harmonic function u 1 and u 2 in the upper half-plane and the lower half-plane, respectively, such that 

u z = u2, u~(x ,  +0)  = u~(x ,  - 0 )  for Ixl  >-- a; (1.1) 

ul,(x, +0) = k [ - ]  + ICx), u2~(x, - 0 )  = k [ - l ,  Ix[ ~< a, (1.2) 

where [u] = ul(x, +0) - u2(x, - 0 ) ;  k > 0. It is assumed the stresses vanish at infinity. 
Conditions (1.1) are for ideal contact when [ x [ > a, and conditions (1.2) arise if we assume that there is a thin layer 

of material with a low shear modulus on the section of the interface ( - a ,  a) (see the derivation of this conjugate condition in 
[1, 2]). The contact between a body and a thin poorly conducting layer corresponds to this problem in the case of steady heat 

conduction [2]. 
In this paper we construct a system of hypersingular equations for problem (1.1), (1.2) and we investigate its behavior 

for small and large k. It is shown that a solution of this system of equations exists in a certain H61der-continuous weighted class 
of functions. In the theory of elasticity the conditions of viscous friction at the interface correspond to conditions (1.2) and k 

is called the coefficient of  viscosity. We will adhere to this terminology below. 
The function f(x) in (1.2) models the action of specified surface forces. 
2. We will now give a formal derivation of the system of integral equations for problem (1. I), (1.2). In view of the 

fact that the stresses vanish at infinity it is natural to seek u 1 and u 2 as a Poisson integral for the lower and upper half-planes 

respectively 

= 1+~ " mt(t)ydt  
u~ ~_~.(x - 0 2 + y~ ; (2.1) 

§  

u~= -~.,(~_O,+y2 (2.2) 

with as yet unknown densities m z and m 2. It follows from (2.1) and (2.2) that ut(x, +0)  = ml(x), u2(x, - 0 )  = m2(x), and 

therefore when. I x [ _> a, ml(x) = m2(x). By calculating Uly(X, +0) and U2y(X, - 0 )  we obtain 

f ml(t) + m2(t)dt 
- o  
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when [ x [ _> a, but then it is natural to assume that ml(x) + m2(x) = 0 and ml(x ) = m2(x ) = 0 when [ x [ _> a. The 

interval of integration ( -  oo, oo) in this case contracts to the interval ( - a ,  a) and the conjugation conditions (1.2) lead to the 

following system of equations: 

1 ~ m2(t)dt 
- .  ~ -  ~ - k ( . h (x  ) - ,,h(~)); 

+a 

-.  "('~xU-~2 - k(rnz(x ) - m2(x)) + f ( x ) .  

(2.3) 

(2.4) 

Note that 

1 "f m(t)dt 

is a hypersingular integral and it must be understood as the finite part of the diverging Hadamard integral [3]. W h e n f E  C 1,a(a, 

b) is a Banach space of functions that are continuous and have a first continuous derivative in the section (a, b), where the first 

derivative satisfies the H61der condition with index cz < Dm(x) can be calculated from the from formula 

•f  f(t)dt ~a) f(b) v.p. f (_.(t)_dt 
x - a  b - x  ox-  

Here p.f. and v.p. are the finite part of the Hadamard diverging integral and the principal value of the Cauchy singular integral, 

respectively. We will put m(x) = ml(x) + m2(x), s(x) = m1(x). After adding and subtracting equations (2.3) and (2.4) we 

obtain the two equivalent equations 

1 7 s(t)dt 2ks(x) + /(x); (2.5) 
~t J - m - - 2  - -  -~ (x - t) 

1 ~ m(t)dt 
a - - - - 2  - /(x) . (2.6) - ,  (x  - t) 

We introduce the Banach space D 1,a of the functions s(x) which vanish when x = _ a, such that s'(x) = g'*(x)(a 2 
_ x2)-l/2(g,*(x)E 1,~x) with norm 

II,o IIo1,= = II,o IIc + I1~"* I17~. 

Consider Eq. (2.5). It can be written as 

a 7 s(t)dt 2ks(x) + /(x) (2.7) 
dx t - x - 

- a  

By considering the singular integral in (2.7) in the class of functions that are bounded when x = +a ,  we obtain 

t 

- ,  (2k f s(cOda + F(x) + c)at  

s ( x )  = - . .  '/'U-'---- t r ( t  - x )  

(2.8) 

when the following condition of  solvability is satisfied: 
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t 

-a (2k f s (a)da + F(x) + C)dt 

f -a g U S T  = 0 ,  
+a 

which enables us to determine the constant C. By changing the order of integration in (2.8), we have the following Fredholm 

integral equation of the second kind for s(x): 

k +~ 1 +~ 
s (x )  = - -~ f s ( t ) k ( t , x ) d t  - -~ f f ( t ) k ( t , x ) d t .  

- a  - a  

Here 

l , :  - t:, + qi'~ 2 -.~:):a 2 _ : )  . 
k ( t , x )  = 2In aZ _ tx - ~[(r2 - x:)(a z - t 2) ' 

the kernel k(x, t ) E L 2 ( - a ,  a). Note that (2.5) can be reduced to the Prandtl equation in thin-wing theory by putting s(x) = 

g'(x). 
Equation (2.6) has an explicit solution that is bounded when x = _+a. In fact, by integrating (2.6) with respect to x 

we obtain 
+ a  x 

. . . . . . . . .  = / ( t )d t  + C = F(x) + C, 
~ t -" .~: 
-a -a 

re(x) = -  ~d"r-~--- "~-_ ~ ( t - x ) '  

if the following condition of  solvability in the class of bounded functions is satisfied: 

i +~r F(x)dx 
c = - ~ T J ~ , v i - - 7 "  

_a  ~ l  f2 ~ 

The results obtained in [4] show that the solutions of Eqs. (2.6) belong to D l,a whenf(x)EC~ We recall that in this case 

m 1 and m 2 vanish at the ends of the interval, and their derivatives may have root singularities. As shown in [4], the solution 

of Eq. (2.5) for small k can be constructed either by the method of successive approximations or in the form of a converging 

power series in k. Moreover, a method is also given there for reducing Prandtl's equation to an equivalent infinite system of 

linear algebraic equations which is also applicable in the case being investigated here. For large values of  k, Eq. (2.5) becomes 

a singularly perturbed equation and its approximate solution can be obtained by the method of joined asymptotic expansions. 

Put k = e -1. Equation (2.5) can then be written in the form 

e ~ s(t)dt 
:-7 (7~-7)" - 2:(x)  + c l ( x ) .  

- a  

(2.9) 

By representing the solution of  this equation as a series in powers of 

s ( x )  = ~ :s(x), 
n = o  

we obtain that So(X ) = 0, and 

1 I *~ s _ l(t)dt 
f a  . . . . .  Sj(X) = - 2"f(x), s,,(X) = ~ ( x -  02, n > 1, 
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and hence it is impossible to satisfy the boundary conditions that make s(x) vanish at x = +a.  A method of constructing the 

asymptotic form of the solution of Eq. (2.9) for small e is described in detail in [5]. 
Note that in this problem, unlike the usual problems in the theory of cracks, only the shear stress 7", has a root 

singularity when x = +a.  

REFERENCES 

1. 

2. 

3. 

4. 

5. 

A. A. Samarskii and V. B. Andreev, Difference Methods for Elliptic Equations [in Russian], Nauka, Moscow (1976). 

E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory (Lecture Notes in physics, 127), Springer, Berlin 

(1980). 
W. L. Wendland and E. P. Stephan, "A hypersingular boundary integral method for two-dimensional screen and crack 

problems," Arch. Rat. Math. Anal. 112, 363-390 (1990). 
V. M. Aleksandrov and E. V. Kovalenko, Problems of the Mechanics of Continuous Media with Mixed Boundary 

Conditions [in Russian], Nauka, Moscow (1986). 
S. Nemat-Nasser and J. R. Willis, "Singular perturbation solution of a class of singular integral equations," Quart. 

Appl. Math., 48, No. 4, 741-754 (1990). 

760 


